Actualizado: 05/07/2024
Investigadores de la Escuela de Ingeniería y Ciencias Aplicadas John A. Paulson (SEAS) de Harvard han desarrollado una nueva batería de metal de litio que se puede cargar y descargar al menos 6.000 veces, más que cualquier otra batería de bolsa, y se puede recargar en cuestión de minutos.
Batería de estado sólido que se carga en minutos y dura miles de ciclos
Investigadores de la Escuela John A. Paulson de Ingeniería y Ciencias Aplicadas (SEAS) de la Universidad de Harvard han desarrollado una nueva batería de metal de litio que puede cargarse y descargarse al menos 6.000 veces -más que cualquier otra pila de bolsa- y recargarse en cuestión de minutos.
La investigación no sólo describe una nueva forma de fabricar baterías de estado sólido con un ánodo de metal de litio, sino que también ofrece nuevos conocimientos sobre los materiales utilizados para estas baterías potencialmente revolucionarias.
Las baterías con ánodos de metal de litio se consideran el santo grial de las baterías porque tienen diez veces más capacidad que los ánodos de grafito comerciales y podrían aumentar drásticamente la distancia de conducción de los vehículos eléctricos. Nuestra investigación es un paso importante hacia baterías de estado sólido más prácticas para aplicaciones industriales y comerciales.
Xin Li, profesor asociado de Ciencia de Materiales en SEAS y autor principal del trabajo.
Uno de los mayores retos en el diseño de estas baterías es la formación de dendritas en la superficie del ánodo. Estas estructuras crecen como raíces en el electrolito y perforan la barrera que separa el ánodo del cátodo, provocando un cortocircuito en la batería o incluso un incendio.
Estas dendritas se forman cuando los iones de litio se desplazan del cátodo al ánodo durante la carga, adhiriéndose a la superficie del ánodo en un proceso denominado metalizado. El recubrimiento del ánodo crea una superficie irregular y no homogénea, como la placa de los dientes, y permite que las dendritas arraiguen. Cuando se descarga, es necesario eliminar del ánodo ese recubrimiento similar a la placa y, cuando el chapado es desigual, el proceso de eliminación puede ser lento y dar lugar a baches que inducen un chapado aún más desigual en la siguiente carga.
En 2021, Li y su equipo ofrecieron una forma de hacer frente a las dendritas diseñando una batería multicapa que intercalaba diferentes materiales de distinta estabilidad entre el ánodo y el cátodo. Este diseño multicapa y multimaterial impedía la penetración de las dendritas de litio no deteniéndolas del todo, sino controlándolas y conteniéndolas.
En esta nueva investigación, Li y su equipo impiden la formación de dendritas utilizando partículas de silicio de tamaño micrométrico en el ánodo para constreñir la reacción de litiación y facilitar el recubrimiento homogéneo de una gruesa capa de metal de litio.
En este diseño, cuando los iones de litio se desplazan del cátodo al ánodo durante la carga, la reacción de litiación se constriñe en la superficie poco profunda y los iones se adhieren a la superficie de la partícula de silicio pero no penetran más allá. Esto difiere notablemente de la química de las baterías de iones de litio líquidos, en las que los iones de litio penetran a través de la reacción de litiación profunda y acaban destruyendo las partículas de silicio del ánodo.
Pero, en una batería de estado sólido, los iones de la superficie del silicio se contraen y sufren el proceso dinámico de litiación para formar una capa de metal de litio alrededor del núcleo de silicio.
En nuestro diseño, el metal de litio se envuelve alrededor de la partícula de silicio, como una cáscara de chocolate duro alrededor de un núcleo de avellana en una trufa de chocolate.
Xin Li
Estas partículas recubiertas crean una superficie homogénea por la que se distribuye uniformemente la densidad de corriente, lo que impide el crecimiento de dendritas. Y, como el recubrimiento y la separación pueden producirse rápidamente en una superficie uniforme, la batería puede recargarse en sólo unos 10 minutos.
Los investigadores construyeron una versión de la batería del tamaño de un sello de correos, que es entre 10 y 20 veces mayor que la pila de botón que se fabrica en la mayoría de los laboratorios universitarios. La batería conservó el 80% de su capacidad después de 6.000 ciclos, superando a otras baterías de botón del mercado actual.
La Oficina de Desarrollo Tecnológico de Harvard ha concedido la licencia de la tecnología a Adden Energy, una empresa derivada de Harvard cofundada por Li y tres antiguos alumnos de Harvard. La empresa ha ampliado la tecnología para fabricar una batería de botón del tamaño de un teléfono inteligente.
Li y su equipo también caracterizaron las propiedades que permiten al silicio constreñir la difusión del litio para facilitar el proceso dinámico que favorece el recubrimiento homogéneo de litio grueso. A continuación, definieron un descriptor de propiedades único para describir dicho proceso y lo calcularon para todos los materiales inorgánicos conocidos. Al hacerlo, el equipo descubrió docenas de otros materiales que podrían ofrecer un rendimiento similar.
Investigaciones anteriores habían descubierto que otros materiales, incluida la plata, podían servir como buenos materiales en el ánodo de las baterías de estado sólido. Nuestra investigación explica un posible mecanismo subyacente del proceso y proporciona una vía para identificar nuevos materiales para el diseño de baterías.
Xin Li
Vía seas.harvard.edu
Javier Catalan dice
no tiene nada q ver con el chocolate
Jose dice
hemos perdido el norte con las baterías.
que si sodio, que si hidrógeno, que si algas, y ahora chocolate
no estaban suficientemente explotados los niños en África buscando cacao para los niños de europa, y ahora quieren hacer baterías a buen precio.
arquimides Masip Masó dice
Interesantísimo resultados alcanzado en el desarrollo de estas baterías en favor del uso de la electro moción