• Saltar a la navegación principal
  • Saltar al contenido principal
  • Saltar a la barra lateral principal
  • Publica tu artículo
  • Publicidad
  • Contacto
  • Aviso legal
  • Privacidad
  • Cookies

EcoInventos

Tu blog de gadgets ecológicos

Telegram EcoInventos
  • Lo + Visto
  • Renovables
  • Energía solar
  • Fotovoltaica
  • Autoconsumo
  • Arquitectura
  • Suscripción gratis

Planta de biogás inteligente y automática que garantiza el suministro de electricidad y calor a los pueblos, incluso cuando no brilla el sol

11 febrero, 2023 Deja un comentario

Valora este contenido

En el proyecto PowerLand 4.2, la Universidad de Hohenheim, la Universidad de Ciencias Aplicadas de Reutlingen y Novatech GmbH desarrollaron el sistema de control de una planta de biogás totalmente automatizada que suministra electricidad y calor renovables en función de la demanda, especialmente en los huecos de producción del sol y el viento.

El sistema de control se probó con éxito en un laboratorio real. Gracias a las previsiones de la demanda de energía y a una alimentación adaptada y flexible, los operadores de plantas de biogás pueden ahorrarse con este planteamiento inversiones en tanques de almacenamiento de gas más grandes.

Con la electricidad procedente de las denominadas plantas de biogás flexibilizadas se pueden cerrar de forma selectiva las brechas entre la generación de electricidad dependiente de las condiciones meteorológicas a partir del viento y el sol y la demanda real. El operador de biogás suele orientarse por los precios de la bolsa de electricidad.

En el proyecto PowerLand 4.2, los investigadores querían ir un paso más allá y utilizar una planta de biogás para cubrir la demanda de un asentamiento concreto en combinación con energía solar. Este equilibrado debe ser lo más completo posible para la electricidad y el calor y, además, debe estar automatizado.

Los precios de intercambio de la electricidad no son señales suficientes para ello. En su lugar, se necesita un sistema de control inteligente para la unidad de producción combinada de calor y electricidad (CHP) de la planta de biogás. Debe conocer y procesar la información sobre la demanda local de electricidad y calor, los niveles de llenado de los tanques de almacenamiento de biogás y calor y la generación de todas las demás plantas renovables in situ para los próximos días y derivar horarios razonables para la cogeneración y planes de alimentación anticipada para los fermentadores. En el sur de Alemania, las plantas fotovoltaicas (FV) son las más importantes entre las demás renovables; la energía eólica desempeña un papel menor.

Uno de los parámetros objetivo del proyecto era un modo de funcionamiento optimizado para el suministro de electricidad a la red, en el que la tarea de suministrar calor actuara como «guardarraíl». Esto significa que la unidad de cogeneración tenía que encenderse en cuanto había demanda de calor y el acumulador de calor estaba vacío, aunque no se necesitara carga residual en ese momento. En todos los demás casos, sin embargo, la unidad de cogeneración debía cubrir el «déficit de electricidad». Además, la planta de biogás tenía que ser alimentada de forma «inteligente» para que la cantidad adecuada de gas estuviera disponible en el momento oportuno para los programas de cogeneración con el lento proceso del biogás.

Como resultado, ahora se dispone de un modelo práctico de predicción de la producción de biogás a una tasa de alimentación determinada, así como de un método basado en él para diseñar programas de alimentación que se ajusten a la demanda de gas.

En una prueba real de varias semanas de duración en la estación de investigación «Unterer Lindenhof» de la Universidad de Hohenheim, el sistema demostró finalmente su idoneidad práctica. La estación cuenta con una planta de biogás, una red de calefacción y un consumo energético que corresponde al de un pueblo de 130 habitantes. También se instaló un sistema fotovoltaico especialmente para la prueba, y su producción se incluyó en los modelos de previsión.

Resultó que los datos previstos se acercaban a la realidad y la unidad de cogeneración aplicó bien los programas correspondientes. En conjunto, la desviación entre la demanda de electricidad calculada y la real fue del 4,4%, y de entre el 7% y el 9% en el caso de la demanda de calor. También resultó que la cogeneración aliviaba las redes sin descuidar su tarea de proveedor de calor: Se liberó una cantidad significativamente menor de electricidad excedente en la red circundante y se importó mucha menos electricidad de ella en caso de cuellos de botella.

El sistema de control de plantas de cogeneración y biogás desarrollado en PowerLand 4.2 también puede utilizarse sin problemas en otras ubicaciones y es especialmente adecuado para plantas que abastecen a consumidores de calor. Todo lo que se necesita son los datos de funcionamiento, que normalmente se recogen de todos modos.

La principal ventaja de nuestro planteamiento frente a una planta flexibilizada clásica es que ahorra costosas inversiones en grandes tanques de almacenamiento de gas con la ayuda de la alimentación en función de la demanda. En comparación con una planta de biogás no flexibilizada que funciona continuamente, los operadores también consiguen mayores ingresos por electricidad.

Dr. Andreas Lemmer, de la Universidad de Hohenheim.

Más información: www.powerland42.de

Si te ha gustado este artículo, compártelo con tus amigos en las redes sociales ¡Gracias!
EcoInventos Whatsapp
EcoInventos Correo

Publicado en: Biocombustibles

Interacciones con los lectores

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Barra lateral principal

Pozos canadienses: Tecnología natural de bajo coste para climatizar tu casa ahorrando energía

Los pozos canadienses llevan el aire exterior, con un sistema de tubos enterrados hasta la vivienda, adquiriendo la temperatura del subsuelo.

El primer parque eólico-solar offshore del mundo podría generar hasta 5 veces más energía

La combinación de energía solar y eólica offshore puede aumentar la producción energética hasta 5 veces, sin requerir espacio adicional.

Científicos indios inventan una cosechadora de energía eólica simple y escalable impulsada por el aleteo: energía de la nada

No tiene partes giratorias, requiere poco mantenimiento y puede integrarse fácilmente en entornos urbanos o naturales.

Investigadores surcoreanos han desarrollado el semiconductor inorgánico más pequeño del mundo, mejora la conductividad eléctrica y la eficiencia en la producción de hidrógeno bajo luz solar

Producción ecológica de hidrógeno solar con el semiconductor inorgánico más pequeño del mundo. Avance clave hacia energías limpias y sostenibles sin materiales tóxicos.

Empresa tejana ha desarrollado Solaris, la primera sauna off-grid y alimentada por energía solar

Solaris puede alcanzar una temperatura de 76°C en solo 30-40 minutos sin depender de la red eléctrica.

Empresa neerlandesa ha montado en Bélgica la primera planta solar de un megavatio con módulos completamente reciclables

Los módulos, desarrollados junto con Sabic, reemplazan el vidrio por un compuesto polimérico, reduciendo su peso a una cuarta parte del de los módulos tradicionales.

Investigadores australianos desarrollan nueva tecnología de energía solar concentrada con espejos de plástico patentados, más baratos y fáciles de instalar

Se espera que el sistema genere suficiente calor para procesos industriales, agrícolas y vitivinícolas que requieren temperaturas entre 100 y 400 °C.

Universitarios neerlandeses desarrollan barco impulsado por hidrógeno que solo emite vapor de agua, quieren demostrar que la navegación sostenible es posible

Estudiantes de la Universidad de Tecnología de Delft han desarrollado un barco propulsado por hidrógeno líquido para demostrar que es posible utilizar combustibles más sostenibles en la industria naval.

China desarrolla el primer sistema de energía solar térmica del mundo que usa dióxido de carbono supercrítico en lugar de vapor para generar electricidad

Un campo de helióstatos de 10.000 m² concentra la energía solar en una torre central, donde calienta agua, sal fundida y partículas cerámicas hasta 800 °C. Las partículas cerámicas permiten calentar el CO₂ a 550 °C para alimentar la turbina.

Ingenieros de Rice logran desalinización solar continua, incluso sin sol, funciona sin necesidad de baterías, filtros ni almacenamiento externo

El sistema, llamado STREED, utiliza un método de reciclaje de calor basado en la resonancia térmica para producir agua potable, incluso sin luz solar directa.

Puede revisar y cambiar sus preferencias de cookies con respecto a este sitio web en este enlace.

Copyright EcoInventos © 2025 - Aviso legal - Política de privacidad RGPD - Cookies